Abstract

We studied the effects of an insertion device (ID) on the dynamic aperture in the 7-GeV Advanced Photon Source (APS) storage ring using the program RACETRACK. We found that the nonlinear effect of the ID is the dominant effect on the dynamic aperture reduction compared to the other multipole errors which exist in the otherwise ideal lattice. The previous study of dynamic aperture was based on the assumption that the effect of the fast oscillating terms in Smith's Hamiltonian is small, and hence can be neglected in the simulation. The remarkable agreement between the previous study and the current results using RACETRACK, including all effects of the fast oscillating terms, justified those assumptions at least for the APS ring. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call