Abstract

The identification of sources and behavior of contaminants is important to control and manage groundwater quality of aquifer systems in urban areas. In this study, hydrogeochemistry of major constituents and stable isotope ratios of nitrate in groundwater were determined to identify contamination sources and transformation processes occurring in soils and deeper groundwater of Beijing with intense human activities. The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from groundwater samples indicate at least three potential sources of nitrate in groundwaters at Beijing. Stable isotope analyses from this study site, which has atmospheric, chemical fertilizer and human waste nitrate sources, provide a tool to distinguish nitrate sources in a confined aquifer where concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Beijing are wastewater and denitrification process occurred specially in the Central area. NO3–N and cation and anion concentrations (Ca2+, Mg2+ Cl− and SO 4 2 ) showed strong correlations indicating that they originated from the same sources. This study demonstrates that a thorough evaluation of hydrodynamic and hydrochemical parameters with dual isotopes of NO3 − constitutes an effective approach for identifying sources and transformation processes of NO3 − in deeper groundwater systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.