Abstract

The extremely slow transformation kinetics of a nanocrystalline bainitic steel makes this novel structure the perfect candidate to determine the carbon content of the bainitic ferrite away from any carbon enriched regions, such as dislocations and boundaries, as the bainite transformation progresses at extremely low temperatures. The purpose of this atom probe tomography study was to systematically track atom distributions during the bainite reaction in a nanocrystalline steel. The results will provide new experimental evidence on the explanation for the incomplete reaction phenomenon and the carbon supersaturation of the bainitic ferrite during transformation, subjects critically relevant to understanding the atomic mechanism controlling bainitic ferrite growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.