Abstract
The minimum tracking set problem is an optimization problem that deals with monitoring communication paths that can be used for exchanging point-to-point messages using as few tracking devices as possible. More precisely, a tracking set of a given graph G and a set of source-destination pairs of vertices is a subset T of vertices of G such that the vertices in T traversed by any source-destination shortest path P uniquely identify P. The minimum tracking set problem has been introduced in Banik et al., CIAC (2017) [1] for the case of a single source-destination pair. There, the authors show that the problem is APX-hard and that it can be 2-approximated for the class of planar graphs, even though no hardness result is known for this case. In this paper we focus on the case of multiple source-destination pairs and we present the first O˜(n)-approximation algorithm for general graphs. Moreover, we prove that the problem remains NP-hard even for cubic planar graphs and all pairs S×D, where S and D are the sets of sources and destinations, respectively. Finally, for the case of a single source-destination pair, we design an (exact) FPT algorithm w.r.t. the maximum number of vertices at the same distance from the source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.