Abstract

The radiometric stability of satellite sensors is crucial for generating highly consistent remote sensing measurements and products. We have presented a radiometric responsivity tracking method designed especially for optical sensors without on-board calibration systems. Using a temporally stable desert site with high reflectance, the sensor responsivity was simulated using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer model (RTM) with information from validated MODIS atmospheric data. Next, radiometric responsivity drifting was identified using a linear regression of the time series bidirectional reflectance distribution function (BRDF) normalized coefficients. The proposed method was applied to Chinese HJ-1A/1B charge-coupled device (CCD) sensors, which have been on-orbit operations for more than 5 years without continuous assessment of their radiometric performance. Results from the Dunhuang desert site between 2008 and 2013 indicated that the CCD sensors degraded at various rates, with the most significant degradation occurring in the blue bands, ranging from 2.8% to 4.2% yr-1. The red bands were more stable, with a degradation rate of 0.7-3.1% yr-1. A cross-sensor comparison revealed the least degradation for the HJ-1A CCD1 (blue: 2.8%; green: 2.8%; red: 0.7%; and NIR: 0.9% yr-1), whereas the degradation of HJ-1B CCD1 was most pronounced (blue: 3.5%; green: 4.1%; red: 2.3%; and NIR: 3.4% yr-1). The uncertainties of the method were evaluated theoretically based on the propagation of uncertainties from all possible sources of the RT simulations. In addition, a cross comparison with matchup ground-based absolute calibration results was conducted. The comparison demonstrated that the method was useful for continuously monitoring the radiometric performance of remote sensors, such as HJ-1A/1B CCD and GaoFen (GF) series (China's latest high-definition Earth observation satellite), and indicated the potential use of the method for high-precision absolute calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.