Abstract

Adaptive signal processing algorithms derived from LS (least squares) cost functions are known to converge extremely fast and have excellent capabilities to "track" an unknown parameter vector. This paper treats analytically and experimentally the steady-state operation of RLS (recursive least squares) adaptive filters with exponential windows for stationary and nonstationary inputs. A new formula for the "estimation-noise" has been derived involving second- and fourth-order statistics of the filter input as well as the exponential windowing factor and filter length. Furthermore, it is shown that the adaptation process associated with "lag effects" depends solely on the exponential weighting parameter λ. In addition, the calculation of the excess mean square error due to the lag for an assumed Markov channel provides the necessary information about tradeoffs between speed of adaptation and steady-state error. It is also the basis for comparison to the simple LMS algorithm, in a simple case of channel identification, it is shown that the LMS and RLS adaptive filters have the same tracking behavior. Finally, in the last part, we present new RLS restart procedures applied to transversal structures for mitigating the disastrous results of the third source of noise, namely, finite precision arithmetic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.