Abstract

A convex combination adaptive filter based on maximum correntropy criterion (CMCC) was widely used to solve the contradiction between the step size and the misadjustment in impulsive interference. However, one of the major drawbacks of the CMCC is its poor tracking ability. In order to solve this problem, this paper proposes an improved convex combination based on the maximum correntropy criterion (ICMCC), and investigates its estimation performance for system identification in the presence of non-Gaussian noise. The proposed ICMCC algorithm implements the combination of arbitrary number of maximum correntropy criterion (MCC) based adaptive filters with different adaption steps. Each MCC filter in the ICMCC is capable of tracking a specific change speed, such that the combined filter can track a variety of the change speed of weight vectors. In terms of normalized mean square deviation (NMSD) and tracking speed, the proposed algorithm shows good performance in the system identification for four non-Gaussian noise scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.