Abstract

Studying the dynamic interaction between host cells and pathogen is vital but remains technically challenging. We describe herein a time-resolved chemical proteomics strategy enabling host and pathogen temporal interaction profiling (HAPTIP) for tracking the entry of a pathogen into the host cell. A novel multifunctional chemical proteomics probe was introduced to label living bacteria followed by in vivo crosslinking of bacteria proteins to their interacting host-cell proteins at different time points initiated by UV for label-free quantitative proteomics analysis. We observed over 400 specific interacting proteins crosslinked with the probe during the formation of Salmonella-containing vacuole (SCV). This novel chemical proteomics approach provides a temporal interaction profile of host and pathogen in high throughput and would facilitate better understanding of the infection process at the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.