Abstract

Particles moving inside a fluid near, and interacting with, invariant manifolds is a common phenomenon in a wide variety of applications. One elementary question is whether we can determine once a particle has entered a neighbourhood of an invariant manifold, when it leaves again. Here we approach this problem mathematically by introducing balance functions, which relate the entry and exit points of a particle by an integral variational formula. We define, study, and compare different natural choices for balance functions and conclude that an efficient compromise is to employ normal infinitesimal Lyapunov exponents. We apply our results to two different model flows: a regularized solid-body rotational flow and the asymmetric Kuhlmann--Muldoon model developed in the context of liquid bridges. Furthermore, we employ full numerical simulations of the Navier-Stokes equations of a two-way coupled particle in a shear--stress-driven cavity to test balance functions for a particle moving near an invariant wall. In conclusion, our theoretically-developed framework seems to be applicable to models as well as data to understand particle motion near invariant manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.