Abstract

Over the past decade, advances in strategies to tag cells have opened new avenues for examining the development of myelin-forming glial cells and for monitoring transplanted cells in animal models of myelin insufficiency. The strategies for labelling glial cells have encompassed a range of genetic modifications as well as methods for directly attaching labels to cells. Genetically modified oligodendrocytes have been engineered to express enzymatic (e.g., beta-galactosidase, alkaline phosphatase), naturally fluorescent (e.g., green fluorescent protein), and antibiotic resistance (e.g., neomycin, zeomycin) reporters. Genes have been introduced in vivo and in vitro with viral or plasmid vectors to somatically label glial cells. To generate germ-line transmission of tagged oligodendrocytes, transgenic mice have been created both by direct injection into mouse fertilized eggs and by "knock-in" of reporters targetted to myelin gene loci in embryonic stem cells. Each experimental approach has advantages and limitations that need to be considered for individual applications. The availability of tagged glial cells has expanded our basic understanding of how oligodendrocytes are specified from stem cells and should continue to fill in the gaps in our understanding of how oligodendrocytes differentiate, myelinate, and maintain their myelin sheaths. Moreover, the ability to select oligodendrocytes by virtue of their acquired antibiotic resistance has provided an important new tool for isolating and purifying oligodendrocytes. Tagged glial cells have also been invaluable in evaluating cell transplant therapies in the nervous system. The tracking technologies that have driven these advances in glial cell biology are continuing to evolve and present new opportunities for examining oligodendrocytes in living systems. Microsc. Res. Tech. 52:766-777, 2001. Published 2001 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.