Abstract

In this study, the remediation effects of two types of sludge (ferric-based flocculant and non-ferric-based flocculant) on Cr(VI)-polluted wastewater were evaluated to clarify the key components in sludge hydrothermal solutions responsible for reducing Cr(VI) and understand the underlying molecular-level transformation mechanisms. The results revealed that the primary reactions during the hydrothermal processes were deamination and decarboxylation reactions. Correlation analysis highlighted proteins, reducing sugars, amino groups, and phenolic hydroxyl groups as the major contributors. In-depth analysis of the transformation process of functional groups within dissolved organic matter (DOM) and synergistic redox process between Cr(VI) and DOM in hydrothermal solutions demonstrated that phenolic hydroxyl and amino groups gradually underwent oxidation during reduction of Cr(VI) by DOM, forming aldehyde and carboxyl groups, among the others. Time-dependent density functional theory calculations revealed notable shift of reducing functional groups from ground state to excited state following iron complexation, ultimately facilitating reduction reaction. Subsequent investigations, including soil column leaching and seed germination rate tests, indicated that synergistic redox interaction between Cr(VI) and DOM significantly reduced waterborne heavy metal and toxic organic pollution. These findings carry substantial implications for sludge treatment and remediation of heavy metal pollution in wastewater, offering valuable insights into effective environmental remediation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.