Abstract

Total internal reflection fluorescence microscopy is used to detect cellular events near the plasma membrane. Behaviours of secretory vesicles near the cell surface of living PC12 cells, a neuroendocrine cell line, are studied. The secretory vesicles are labelled by over-expression of enhanced green fluorescent protein-tagged Rab3A, one of the small G proteins involved in the fusion of secretory vesicles to plasma membrane in PC12 cells. Images acquired by a fast cooled charge-coupled device camera using conventional fluorescence microscopy and total internal reflection fluorescence microscopy are compared and analysed. Within the small evanescent range (< 200 nm), the movements of the secretory vesicles of PC12 cells before and after stimulation by high K+ are examined. The movements of one vesicle relative to another already docked on the membrane are detected. Total internal reflection fluorescence microscopy provides a novel optical method to trace and analyse the exocytotic events and vesicle specifically near a cell membrane without interference of signals from other parts of the cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.