Abstract

In this book chapter, we propose a fully automated approach for tracking of multiple objects across multiple cameras with overlapping and non-overlapping views in a unified framework without initial training or prior camera calibration. For tracking with a single camera, Kalman filter and adaptive particle-sampling techniques are integrated for multiple objects tracking. When extended to tracking over multiple cameras, the relations between adjacent cameras are learned systematically by using image registration techniques for consistent handoff of tracking-object labels across cameras. In addition, object appearance measurement is employed to validate the labeling results. Experimental results demonstrate the performance of our approach on real video sequences for cameras with overlapping and non-overlapping views.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.