Abstract

A new algorithm for tracking coherent broadband sources in linear arrays employing tapped delay line processing is presented and investigated. To resolve M-directional broadband sources with a maximum coherent group size of M a , the original ( M + l)-element power inversion array is augmented by M a − 1 elements to result in a total of M a identical but spatially shifted ( M + l)-element subarrays. Using this technique, each broadband source is individually tracked in a cyclical time multiplexed manner, by steering a broadband null in each subarray formed from the use of a tapped delay line filter with weights constrained to have maximally flat frequency response at the nulling direction, to minimise the spatially averaged power output. Since the new algorithm updates only one tapped delay line filter at any instant, the overall implementation complexity of the proposed algorithm is comparable to that of using the LMS algorithm directly on a broadband array. However, unlike the latter algorithm, the new algorithm possesses a convergence behaviour that is significantly faster and almost independent of the external noise environment and provides the sources' directions directly without employing a root-finding routine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.