Abstract

Nanoparticles are an important class of materials that exhibit special properties arising from their high surface area-to-volume ratio. Scanning transmission electron microscopy (STEM) has played an important role in nanoparticle characterization, owing to its high spatial resolution, which allows direct visualization of composition and morphology with atomic precision. This typically comes at the cost of sample size, potentially limiting the accuracy and relevance of STEM results, as well as the ability to meaningfully track changes in properties that vary spatially. In this work, automated STEM data acquisition and analysis techniques are employed that enable physical and compositional properties of nanoparticles to be obtained at high resolution over length scales on the order of microns. This is demonstrated by studying the localized effects of potential cycling on electrocatalyst degradation across proton exchange membrane fuel cell cathodes. In contrast to conventional, manual STEM measurements, which produce particle size distributions representing hundreds of particles, these high-throughput automated methods capture tens of thousands of particles and enable nanoparticle size, number density, and composition to be measured as a function of position within the cathode. Comparing the properties of pristine and degraded fuel cells provides statistically robust evidence for the inhomogeneous nature of catalyst degradation across electrodes. These results demonstrate how high-throughput automated STEM techniques can be utilized to investigate local phenomena occurring in nanoparticle systems employed in practical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.