Abstract

In an intelligent multi-target tracking (MTT) system, the tracking filter cannot track multi-targets significantly through occlusion in a low-altitude airspace. The most challenging issues are the target deformation, target occlusion and targets being concealed by the presence of background clutter. Thus, the true tracks that follow the desired targets are often lost due to the occlusion of uncertain measurements detected by a sensor, such as a motion capture (mocap) sensor. In addition, sensor measurement noise, process noise and clutter measurements degrade the system performance. To avoid track loss, we use the Markov-chain-two (MC2) model that allows the propagation of target existence through the occlusion region. We utilized the MC2 model in linear multi-target tracking based on the integrated probabilistic data association (LMIPDA) and proposed a modified integrated algorithm referred to here as LMIPDA-MC2. We consider a three-dimensional surveillance for tracking occluded targets, such as unmanned aerial vehicles (UAVs) and other autonomous vehicles at low altitude in clutters. We compared the results of the proposed method with existing Markov-chain model based algorithms using Monte Carlo simulations and practical experiments. We also provide track retention and false-track discrimination (FTD) statistics to explain the significance of the LMIPDA-MC2 algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.