Abstract
This paper presents a distributed approach to enable mobile robot swarms to track multiple targets moving unpredictably. The proposed approach consists of two constituent algorithms: local interaction and target tracking. When the robots are faster than the targets, Lyapunov theory can be applied to show that the robots converge asymptotically to each vertex of the desired equilateral triangular configurations while tracking the targets. Toward practical implementation of the algorithms, it is important to realize the observation capability of individual robots in an inexpensive and efficient way. A new proximity sensor that we call dual rotating infrared (DRIr) sensor is developed to meet these requirements. Both our simulation and experimental results employing the proposed algorithms and DRIr sensors confirm that the proposed distributed multi-target tracking method for a swarm of robots is effective and easy to implement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.