Abstract

To research the dynamic course of multipactor suppression on the periodically patterned surface, tens of electron collision processes are tracked by numerical calculation. The influences of microwave frequency, amplitude of RF electric field, slope angle, the local field enhancement, and the tilted incident electric field on the multipactor suppression are studied by tracking multi-generation electrons' trajectories, hopping and flight time, collision energy, and secondary emission yield. Meanwhile, the dynamic processes of secondary electrons on the periodic surface are analyzed by particle-in-cell (PIC) simulation. The PIC results are consistent with the analytical results in which the electrons fly reciprocatingly between the slopes and impact on the slopes; the methods of increasing the slope angle, enlarging the RF field, and lowering the frequency in a certain range are helpful to enhance the multipactor suppression steadily and persistently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call