Abstract

Aromatic compounds are widely contained in coking wastewater (CWW), drawing great attention due to their potential risks to environment and human health. Integrated systems combining biological processes with advanced treatments are the current trend of CWW reclamation. However, the variations of aromatic composition throughout these processes are poorly understood. This study investigated the occurrence, fate and removal of aromatic compounds in a full scale CWW reclamation plant with eight treatment stages by gas chromatography–mass spectrometry and optical spectrum. The results showed that polycyclic aromatic hydrocarbons (PAHs), phenols and heterocyclic compounds accounted for 38.9%, 33.5% and 22.6% of the total organics in CWW, respectively. Among them, PAHs were more sensitive to anaerobic digestion, while phenols and heterocyclics had higher bioavailability in aerobic process. Although more than 90% DOC could be removed in biological processes, the bio-effluent was still brown in color, implying the residues of aromatics to the advanced treatments. The interaction between the bio-refractory organics and the advanced treatments suggested that multiple aromatic compounds were selectively removed along the treatment train. Specifically, coagulation, sand filtration, ultrafiltration, adsorption, nanofiltration and reverse osmosis were found to be highly related to the elimination of residual isoquinoline, phenol, cresol, fluoranthene, benzene and humic-like organics, correspondingly. Findings in this study indicated that adsorption was a key step for removing chromophoric PAHs with more aromatic rings, while fouling control in the end-point membrane systems should be focused on the elimination of BTEXs and humic-like substances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.