Abstract
This manuscript proposes moving horizon control and state/parameter estimation designs for pipeline networks modelled by partial differential equations (PDEs) with boundary actuation. The spatial–temporal pressure and velocity dynamics within the pipelines are described by a system of six coupled one-dimensional first-order nonlinear hyperbolic PDEs. To address the discrete-time modelling challenge and preserve the infinite-dimensional nature of the pipeline system, the Cayley–Tustin transformation is deployed for model time discretization without any spatial discretization or model reduction. Considering the lack of full state information across the entire pipeline manifold, unknown states and uncertain parameters are estimated using moving horizon estimation (MHE). Based on the estimated states and parameters, a tracking model predictive control (MPC) strategy for the discrete-time infinite-dimensional pipeline system is proposed, which enables specific operation while ensuring physical constraint satisfaction. The effectiveness of the proposed controller and estimator designs is demonstrated via numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computers & Chemical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.