Abstract

In vivo calcium imaging enables simultaneous recording of large neuronal ensembles engaged in complex operations. Many experiments require monitoring and identification of cell populations across multiple sessions. Population cell tracking across multiple sessions is complicated by non-rigid transformations induced by cell movement and imaging field shifts. We introduce SCOUT (Single-Cell SpatiOtemporal LongitUdinal Tracking), a fast, robust cell tracking method utilizing multiple cell-cell similarity metrics, probabilistic inference, and an adaptive clustering methodology to perform cell identification across multiple sessions. By comparing SCOUT with current popular cell tracking algorithms on simulated, 1-photon and 2-photon recordings, we empirically show this approach improves cell tracking quality, particularly when recordings exhibit spatial footprint movement between sessions or poor neural extraction quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.