Abstract
Tracking objects in low frame rate (LFR) video or with abrupt motion poses two main difficulties which most conventional tracking methods can hardly handle: 1) poor motion continuity and increased search space; 2) fast appearance variation of target and more background clutter due to increased search space. In this paper, we address the problem from a view which integrates conventional tracking and detection, and present a temporal probabilistic combination of discriminative observers of different lifespans. Each observer is learned from different ranges of samples, with different subsets of features, to achieve varying levels of discriminative power at varying cost. An efficient fusion and temporal inference is then done by a cascade particle filter which consists of multiple stages of importance sampling. Experiments show significantly improved accuracy of the proposed approach in comparison with existing tracking methods, under the condition of LFR data and abrupt motion of both target and camera.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.