Abstract

Collision avoidance models derived from the study of insect brains do not perform universally well in practical collision scenarios, although the insects themselves may perform well in similar situations. In this article, we present a detailed simulation analysis of two well-known collision avoidance models and illustrate their limitations. In doing so, we present a novel continuous-time implementation of a neuronally based collision avoidance model. We then show that visual tracking can improve performance of these models by allowing an relative computation of the distance between the obstacle and the observer. We compare the results of simulations of the two models with and without tracking to show how tracking improves the ability of the model to detect an imminent collision. We present an implementation of one of these models processing imagery from a camera to show how it performs in real-world scenarios. These results suggest that insects may track looming objects with their gaze.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.