Abstract

ChIP-seq is a powerful technique that allows the detection of chromatin localization for proteins and epigenetic modifications. However, conventional ChIP-seq usually requires millions of cells. This becomes a daunting task for applications in which only limited experimental materials are available. For example, during mammalian embryo development, the epigenomes undergo drastic reprogramming which endows a fertilized egg with the potential to develop into the whole body. Low-input ChIP-seq methods would be instrumental to help decipher molecular mechanisms underlying such epigenetic reprogramming. Here we describe an optimized ChIP-seq method-STAR (Small-scale TELP-Assisted Rapid) ChIP-seq-that allows the detection of histone modifications using only a few hundred cells. This method is proven to be robust in epigenomic profiling in both embryos and cultured cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call