Abstract

Paronychia argentea is a wild medicinal herbaceous herb that contains many secondary metabolites. It grows wild in Jordan under harsh high salinity soil conditions. This study was conducted to investigate the effect of salinity stress on growth, biochemical responses, and ion uptake of in vitro Paronychia argentea micro plants. Our results revealed a clear reduction in all growth parameters in response to an increase in salinity level used (0, 25, 50, 100, 200 mM). When the growth medium was supplemented with 200 mM NaCl; the fresh and dry weights were reduced by 40% compared with the control treatment. Moreover, micro plant uptake of phosphorus calcium and potassium ions decreased with increasing salinity levels. The Mg++ content was increased by 10% at the 25 mM level of NaCl compared with control, while it declined by 20% at 200 mM of NaCl. On the other hand, Na+ uptake increased with increasing salinity levels and reached a maximum value of (18328 ppm/D. W) at 200 mM NaCl. Moreover, proline content increased in response to salinity level to record maximum value (80.8 µmole/g) at 200 mM NaCl compared to (30.4 µmol/g) obtained in the control. Quercetins content in P. argentea micro plants was increased by 1.7-fold in concentration in response to salinity at 50 mM of NaCl, while an about 7-fold increase in the concentration of isorhamnetin content was obtained due to salinity at 100 mM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call