Abstract

Abstract Using a two-dimensional Fourier decomposition and a four-dimensional ray-tracing technique, the propagating characteristics and source mechanisms of mesoscale gravity waves simulated in idealized baroclinic jet-front systems are investigated. The Fourier decomposition successfully separates the simulated gravity waves from a complex background flow in the troposphere. Four groups of gravity waves in the lower stratosphere are identified from the spectral decomposition. One is a northward-propagating short-scale wave packet with horizontal wavelength of ∼150 km, and another is a northeastward-propagating medium-scale wave packet with horizontal wavelength of ∼350 km. Both of these are most pronounced in the exit region of the upper-tropospheric jet. A third group exists in the deep trough region above (and nearly perpendicular to) the jet, and a fourth group far to the south of the jet right above the surface cold front, both of which are short-scale waves and have a horizontal wavelength of ∼100–150 km. Ray-tracing analysis suggests that the medium-scale gravity waves originate from the upper-tropospheric jet-front system where there is maximum imbalance, though contributions from the surface fronts cannot be completely ruled out. The shorter-scale, northward-propagating gravity waves in the jet-exit region, on the other hand, may originate from both the upper-tropospheric jet-front system and the surface frontal system. The shorter-scale gravity waves in the deep trough region across the jet (and those right above the surface cold fronts) are almost certain to initiate from the surface frontal system. Ray-tracing analysis also reveals a very strong influence of the spatial and temporal variability of the complex background flow on the characteristics of gravity waves as they propagate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call