Abstract
Summary Lichens have been used to efficiently track major drivers of global change from the local to regional scale since the beginning of the industrial revolution (sulphur dioxide) to the present (nitrogen deposition and climate change). Currently, the challenge is to universalize monitoring methodologies to compare global change drivers’ simultaneous and independent effects on ecosystems and to assess the efficacy of mitigation measures. Because two protocols are now used at a continental scale North America (US) and Europe (EU), it is timely to investigate the compatibility of the interpretation of their outcomes. For the first time, we present an analytical framework to compare the interpretation of data sets coming from these methods utilizing broadly accepted biodiversity metrics, featuring a paired data set from the US Pacific Northwest. The methodologies yielded highly similar interpretation trends between response metrics: taxonomic diversity, functional diversity and community composition shifts in response to two major drivers of global change (nitrogen deposition and climate). A framework was designed to incorporate surrogates of species richness (the most commonly used empirical trend in taxonomic diversity), shifts in species composition (compositional turnover) and metrics of functional diversity (link between community shifts to effects and ecosystem structure and functioning). These metrics are essential to more thoroughly comprehend biodiversity response to global change. Its inclusion in this framework enables future cross‐continental analysis of lichen biodiversity change from North America and Europe in response to global change. Future works should focus on developing independent metrics for response to global change drivers, namely climate and pollution, taking us one step closer to a lichen‐based global ecological indicator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.