Abstract

Some of the major restaurants and grocery chains in the United States have pledged to buy cage-free (CF) eggs only by 2025 or 2030. While CF house allows hens to perform more natural behaviors (e.g., dust bathing, perching, and foraging on the litter floor), a particular challenge is floor eggs (i.e., mislaid eggs on litter floor). Floor eggs have high chances of contamination. The manual collection of eggs is laborious and time-consuming. Therefore, precision poultry farming technology is necessary to detect floor eggs. In this study, 3 new deep learning models, that is, YOLOv5s-egg, YOLOv5x-egg, and YOLOv7-egg networks, were developed, trained, and compared in tracking floor eggs in 4 research cage-free laying hen facilities. Models were verified to detect eggs by using images collected in 2 different commercial houses. Results indicate that the YOLOv5s-egg model detected floor eggs with a precision of 87.9%, recall of 86.8%, and mean average precision (mAP) of 90.9%; the YOLOv5x-egg model detected the floor eggs with a precision of 90%, recall of 87.9%, and mAP of 92.1%; and the YOLOv7-egg model detected the eggs with a precision of 89.5%, recall of 85.4%, and mAP of 88%. All models performed with over 85% detection precision; however, model performance is affected by the stocking density, varying light intensity, and images occluded by equipment like drinking lines, perches, and feeders. The YOLOv5x-egg model detected floor eggs with higher accuracy, precision, mAP, and recall than YOLOv5s-egg and YOLOv7-egg. This study provides a reference for cage-free producers that floor eggs can be monitored automatically. Future studies are guaranteed to test the system in commercial houses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call