Abstract
Mycotoxins produced by Alternaria fungi are ubiquitous food contaminants, but analytical methods for generating comprehensive exposure data are rare. We describe the development of an LC-MS/MS method covering 17 toxins for investigating the natural occurrence of free and modified Alternaria toxins in tomato sauce, sunflower seed oil, and wheat flour. Target analytes included alternariol (AOH), AOH-3-glucoside, AOH-9-glucoside, AOH-3-sulfate, alternariol monomethyl ether (AME), AME-3-glucoside, AME-3-sulfate, altenuene, isoaltenuene, tenuazonic acid (TeA), tentoxin (TEN), altertoxin I and II, alterperylenol, stemphyltoxin III, altenusin, and altenuic acid III. Extensive optimization resulted in a time- and cost-effective sample preparation protocol and a chromatographic baseline separation of included isomers. Overall, adequate limits of detection (0.03–9 ng/g) and quantitation (0.6–18 ng/g), intermediate precision (9–44%), and relative recovery values (75–100%) were achieved. However, stemphyltoxin III, AOH-3-sulfate, AME-3-sulfate, altenusin, and altenuic acid III showed recoveries in wheat flour below 70%, while their performance was stable and reproducible. Our pilot study with samples from the Austrian retail market demonstrated that tomato sauces (n = 12) contained AOH, AME, TeA, and TEN in concentrations up to 20, 4, 322, and 0.6 ng/g, while sunflower seed oil (n = 7) and wheat flour samples (n = 9) were contaminated at comparatively lower levels. Interestingly and of relevance for risk assessment, AOH-9-glucoside, discovered for the first time in naturally contaminated food items, and AME-3-sulfate were found in concentrations similar to their parent toxins. In conclusion, the established multi-analyte method proved to be fit for purpose for generating comprehensive Alternaria toxin occurrence data in different food matrices.Graphical abstractᅟ
Highlights
Alternaria is an ubiquitously occurring fungal genus belonging to the division of Ascomycota
Alternaria strains are capable of producing mycotoxins, toxic secondary metabolites, which can be assigned to five substance classes (Fig. 1): dibenzo-α-pyrone derivatives, e.g., alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), isoaltenuene, altenusin (ALS); perylene quinone derivatives, e.g., altertoxin I, II, and III (ATX-I, ATX-II, ATX-III), alterperylenol (ALP), stemphyltoxin III (STTX-III); tetramic acid derivatives, e.g., tenuazonic acid (TeA), allo-tenuazonic acid, altersetin (AST); miscellaneous structures (tentoxin (TEN), altenuic acid III (AA-III); and aminopentol esters, e.g., A. alternata f. sp
ALT, isoALT, and AA-III were synthesized at the Institute of Organic Chemistry (Karlsruhe Institute of Technology, Germany) [41, 42], while AOH-3Glc, AOH-9-Glc, AOH-3-S, and AME-3-Glc were synthesized at the Institute of Applied Synthetic Chemistry (Vienna University of Technology (TU Wien), Vienna, Austria) [28]
Summary
Alternaria is an ubiquitously occurring fungal genus belonging to the division of Ascomycota. (e.g., A. alternata, A. tenuissima, A. solani, and A. infectoria) can infest a wide variety of agricultural crops like cereals (wheat, barley, and sorghum), tomatoes, sunflower seeds, citrus fruits, apples, grapes, and olives [1,2,3,4,5]. Alternaria strains are capable of producing mycotoxins, toxic secondary metabolites, which can be assigned to five substance classes (Fig. 1): dibenzo-α-pyrone derivatives, e.g., alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), isoaltenuene (isoALT), altenusin (ALS); perylene quinone derivatives, e.g., altertoxin I, II, and III (ATX-I, ATX-II, ATX-III), alterperylenol (ALP), stemphyltoxin III (STTX-III); tetramic acid derivatives, e.g., tenuazonic acid (TeA), allo-tenuazonic acid (alloTeA), altersetin (AST); miscellaneous structures (tentoxin (TEN), altenuic acid III (AA-III); and aminopentol esters, e.g., A. alternata f.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.