Abstract

Complex (dusty) plasmas - consisting of micron-sized grains within an ion-electron plasma - are a unique vehicle for studying the kinematics of microscopic systems. Although they are mesoscopic, they embody many of the major structural properties of conventional condensed matter systems (fluid-like and crystal-like states) and they can be used to probe the structural dynamics of such complex systems. Modern state estimation and tracking techniques allow complex systems to be monitored automatically and provide mechanisms for deriving mathematical models for the underlying dynamics - identifying where known models are deficient and suggesting new dynamical models that better match the experimental data. This paper discusses how modern tracking and state estimation techniques can be used to explore and control important physical processes in complex plasmas: such as phase transitions, wave propagation and viscous flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.