Abstract

We propose a dynamical model-based approach for tracking the shape and deformation of highly deforming objects from time-varying imagery. Previous works have assumed that the object deformation is smooth, which is realistic for the tracking problem, but most have restricted the deformation to belong to a finite-dimensional group, such as affine motions, or to finitely-parameterized models. This, however, limits the accuracy of the tracking scheme. We exploit the smoothness assumption implicit in previous work, but we lift the restriction to finite-dimensional motions/deformations. To do so, we derive analytical tools to define a dynamical model on the (infinite-dimensional) space of curves. To demonstrate the application of these ideas to object tracking, we construct a simple dynamical model on shapes, which is a first-order approximation to any dynamical system. We then derive an associated nonlinear filter that estimates and predicts the shape and deformation of a object from image measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.