Abstract

In this work, we provide a mechanistic understanding of the degradation of perovskite solar cells in operation by focusing on methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) and tracking the evolution of electronic defects via photo-induced current transient spectroscopy (PICTS). Moreover, we also record the degradation of its photovaltaic characteristics over time under various electric load and temperature conditions. Using PICTS, we found that bands of trap states, initially highly localized deep within the band gap of the perovskite, widened over the exposure period. This effect was exacerbated with increasing temperature. Further, using the design of experiment methodology for this multifactorial study, we found that two interaction factors (temperatureร— load & temperatureร— time) were significant in the degradation of the perovskite cells, validating the importance of our holistic approach. Through these observations, we establish a mechanistic link between deep-level traps and photovoltaic characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.