Abstract

Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications.

Highlights

  • We propose a modified approach for precision sensorless SMA servo control that consists of three components: (1) a hysteresis model that combines the strengths of the two sensorless control strategies, (2) a thermodynamics model to compensate for the temperature effect, and (3) a spring model to include the strain energy effect

  • This paper described a power width modulation (PWM) based self-sensing feedback controller with inverse hysteresis compensator for a SMA actuator

  • The proposed SMA compensator comprised an inverse hysteresis model to represent the major and minor hysteresis loops, a temperature dynamics model to compute the required input power to heat up the SMA actuator, and a spring force model that took accounted for the strain energy required to deform the actuator

Read more

Summary

Introduction

Shape memory alloys (SMAs) are metals that can recover from strains of up to 10% via stress- or temperature-induced crystalline transformation between high-temperature austenite and low-temperature martensite phases [1]. The SMA actuator is constructed from a fiber-like SMA wire designed to contract and extend like real muscles. An SMA wire is soft and pliable, very much like a nylon thread. When heated it begins to contract sharply with a large force and eventually becomes as stiff as a piano wire. The maximum strain is typically 4.5% of its original length. When the SMA is again cooled to room temperature it softens and recovers its original length

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call