Abstract

This paper studies the disturbance observer-based model predictive control approach to deal with the unmanned aerial vehicle formation flight with unknown disturbances. The distributed control problem for a class of multiple unmanned aerial vehicle systems with reference trajectory tracking and disturbance rejection is formulated. Firstly, a local distributed controller is designed by using the model predictive control method to achieve stable tracking, where the local optimization problem is solved by an adaptive differential evolution algorithm. Then, a feedforward compensation controller is introduced by using a disturbance observer to estimate and compensate disturbances, and improve the ability of anti-interference. Besides, the stability of the proposed composite controller is analyzed as well. Finally, the simulation examples are provided to illustrate the validity of proposed control structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call