Abstract

AbstractThis paper proposes a new method for generation of a position reference that has both vibration suppression performance and fast tracking performance for industrial robots. It is important for industrial robots to drive at high speed and with high accuracy. In such cases, vibration is generated. Conventionally, the notch filter is used in order to reduce vibration. It is able to eliminate the natural frequency component, but a reference phase error is generated. The reference phase error causes locus error in the robot. Therefore, the accuracy of the robot is degraded by using a notch filter. The proposed method overcomes this problem by using the compensation gain. The proposed compensation gain is used in order to calculate the reference phase error. Compensation of the reference phase error is attained by feedforward input. Numerical and the experimental results confirm that the proposed method is valid for reducing vibration phenomena and that it decreases the phase error. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 175(1): 53–63, 2011; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.20931

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.