Abstract
The tracking characteristics of tracer particles for particle image velocimetry (PIV) measurements in supersonic flows were investigated. The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunnel (MMWT) of Shanghai Jiao Tong University. The motion of tracer particles carried by the supersonic flow across shockwaves was theoretically modelled, and then their aerodynamic characteristics with compressibility and rarefaction effects were evaluated. According to the proposed selection criterion of tracer particles, the PIV measured results clearly identified that the shockwave amplitude is in good agreement with theory and Schlieren visualizations. For the tracer particles in nanoscales, their effective aerodynamic sizes in the diagnostic zone can be faithfully estimated to characterize the tracking capability and dispersity performance based on their relaxation motion across oblique shockwaves. On the other hand, the seeding system enabled the tracer particles well-controlled and repeatable dispersity against the storage and humidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.