Abstract

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging.

Highlights

  • Enterotoxigenic Escherichia coli (ETEC) is a leading etiologic agent of diarrhea worldwide, causing millions of diarrheic episodes and approximately 120,000 deaths every year (Qadri et al, 2005; Lozano et al, 2012)

  • Luciferase has been used extensively to monitor bacterial infections in living mice, including characterization of the tissue distribution exhibited by Salmonella enterica serovar Typhimurium, evaluation the effects of antibiotic compounds on Staphylococcus aureus in a deep wound model, bacterial dissemination tracking of Yersinia pestis, and assessment of the role of virulence factors during E. coli O104:H4 colonization (Contag et al, 1995; Kuklin et al, 2003; Gonzalez et al, 2012; Torres et al, 2012)

  • We studied ETEC colonization of the streptomycintreated mouse intestine by comparing bacterial shedding of ETEC FMU073332 vs. E. coli K-12 wild-type over time

Read more

Summary

Introduction

Enterotoxigenic Escherichia coli (ETEC) is a leading etiologic agent of diarrhea worldwide, causing millions of diarrheic episodes and approximately 120,000 deaths every year (Qadri et al, 2005; Lozano et al, 2012). ETEC In vivo Colonization Tracking structures have been studied (Gaastra and Svennerholm, 1996; Wolf, 1998); the colonization dynamics and colonic receptor interactions of this human pathogen remain largely uncharacterized (Guevara et al, 2013). Luciferase has been used extensively to monitor bacterial infections in living mice, including characterization of the tissue distribution exhibited by Salmonella enterica serovar Typhimurium, evaluation the effects of antibiotic compounds on Staphylococcus aureus in a deep wound model, bacterial dissemination tracking of Yersinia pestis, and assessment of the role of virulence factors during E. coli O104:H4 colonization (Contag et al, 1995; Kuklin et al, 2003; Gonzalez et al, 2012; Torres et al, 2012). The application bioluminescence technology to study ETEC under in vivo conditions may elucidate the behavior of this bacterium in the gastrointestinal tract in further detail

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.