Abstract

Abstract Sequential data assimilation schemes approaching true optimality for sizable atmospheric models are becoming a reality. The behavior of the Kalman filter (KF) under difficult conditions needs therefore to be understood. In this two-part paper we implement a KF for a two-dimensional shallow-water model, with one or two layers. The model is linearized about a basic flow that depends on latitude; this permits the one-layer (1-L) case to be barotropically unstable. Constant vertical shear in the two-layer (2-L) case induces baroclinic instability. A model-error covariance matrix for the KF simulations is constructed based on the hypothesis that an ensemble of slow modes dominates the errors. In the 1-L case, the system is stable for a meridionally constant basic flow. Assuming equipartition of energy in the construction of the model-error covariance matrix has a deleterious effect on the process of data assimilation in both the stable and unstable cases. Estimation errors are found to be smaller for ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.