Abstract

Predictive maintenance, which means detection of failure ahead of time, is one of the pillars of Industry 4.0. An effective method for this technique is to track early signs of degradation before failure occurs. This paper presents an innovative failure predictive scheme for machines. The proposed scheme combines the use of the full spectrum of vibration data from the machines and a data visualization technology. This scheme requires no training data and can be started quickly after installation. First, we proposed to use the full spectrum (as high-dimensional data vectors) with no cropping and no complex feature extraction and to visualize the data behavior by mapping the high-dimensional vectors into a two-dimensional (2D) map. This ensures simplicity of the process and less possibility of overlooking important information as well as provide a human-friendly and human-understandable output. Second, we developed a real-time data tracker that can predict failure at an appropriate time with sufficient allowance for maintenance by plotting real-time frequency spectrum data of the target machine on a 2D map created from normal data. Finally, we verified our proposal using vibration data of bearings from real-world test-to-failure measurements obtained from the IMS dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.