Abstract
These Human facial expressions convey a lot of information visually rather than articulately. Facial expression recognition plays a crucial role in the area of human-machine interaction. Automatic facial expression recognition system has many applications including, but not limited to, human behaviour understanding, detection of mental disorders, and synthetic human expressions. Recognition of facial expression by computer with high recognition rate is still a challenging task. Two popular methods utilized mostly in the literature for the automatic FER systems are based on geometry and appearance. Facial Expression Recognition usually performed in four-stages consisting of pre-processing, face detection, feature extraction, and expression classification. The human face is an important part of an individual’s body and plays an important role in knowing the individual’s mood. The face is where a human expresses all his basic emotions. In the existing system, they examine the mental state manually by assessing them but have many disadvantages like we cannot predict any accurate solutions based on the assessment score because we might be not sure what kind of emotions the human user would be all time. To overcome this problem, a novel system is proposed to suggest an effective solution for predicting the mental state dynamically, we propose a hybrid architecture invoking facial based emotion sequence, PEN test and IQ test. By consistent monitoring of a human’s emotion and subjecting to PEN and IQ tests, the human’s mental state is routed. Combination of the above three techniques provides promising results for mental state and self-control
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Science, Communication and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.