Abstract
This paper presents a novel approach to tracking a large number of closely spaced objects (CSO) in image sequences that is based on the particle probability hypothesis density (PHD) filter and multiassignment data association. First, the particle PHD filter is adopted to eliminate most of the clutters and to estimate multitarget states. In the particle PHD filter, a noniterative multitarget estimation technique is introduced to reliably estimate multitarget states, and an improved birth particle sampling scheme is present to effectively acquire targets among clutters. Then, an integrated track management method is proposed to realize multitarget track continuity. The core of the track management is the track-to-estimation multiassignment association, which relaxes the traditional one-to-one data association restriction due to the unresolved focal plane CSO measurements. Meanwhile, a unified technique of multiple consecutive misses for track deletion is used jointly to cope with the sensitivity of the PHD filter to the missed detections and to eliminate false alarms further, as well as to initiate tracks of large numbers of CSO. Finally, results of two simulations and one experiment show that the proposed approach is feasible and efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.