Abstract

Robust and cost-effective stimuli-responsive polymers show prominent advantages to be integrated into detection devices. In addition, modified track-etched membranes with chemical-sensing polymers possess additional robustness features such as including the sensing material into sub-micron pores. In this study, we report the preparation of track-etched PET membranes with fluorescent response in direct relation to changes in the pH of the environment. Immobilised Fluorescein and Green Fluorescent Protein have been used as pH-sensor elements. The former was not sensitive to pH, while the latter had a similar pH sensitivity to that of the free protein. Modifications of track-etched membranes were carried out by grafting polymerisation initiated by the remnant radicals, a straightforward technique for selective modification of the inner wall of pores. The biosensor prepared with the fluorescent protein was able to sense the pH of a buffer solution in the range 4 to 8. Furthermore, this membrane evidenced capacity to sense the pH of the cell growth by in situ fluorescence intensity detection during E.coli cell culture in microwells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.