Abstract
Interest in the study of brain connectivity is growing, particularly in understanding the dynamics of the structural/functional connectivity relation. Structural and functional connectivity are most often analysed independently of each other. Track-weighted functional connectivity (TW-FC) was recently proposed as a means to combine structural/functional connectivity information into a single image. We extend here TW-FC in two important ways: first, all the functional data are used without having to define a prior functional network (cf. TW-FC generates a map for a pre-specified network); second, we incorporate time-resolved connectivity information, thus allowing dynamic characterisation of functional connectivity. We refer to this technique as track-weighted dynamic functional connectivity (TW-dFC), which fuses structural/functional connectivity data into a four-dimensional image, providing a new approach to investigate dynamic connectivity. The structural connectivity information effectively 'constrains' the extremely large number of possible connections in the functional connectivity data (i.e. each voxel's connection to every other voxel), thus providing a way of reducing the problem's dimensionality while still maintaining key data features. The methodology is demonstrated in data from eight healthy subjects, and independent component analysis was subsequently applied to parcellate the corpus callosum, as an illustration of a possible application. TW-dFC maps demonstrate that different white matter pathways can have very different temporal characteristics, corresponding to correlated fluctuations in the grey matter regions they link. A realistic parcellation of the corpus callosum was generated, which was qualitatively similar to topography previously reported. TW-dFC, therefore, provides a complementary new tool to investigate the dynamic nature of brain connectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.