Abstract
We propose and assess new algorithms for adaptive detection and tracking based on space-time data. At design stage we take into account possible spillover of target energy to adjacent range cells and assume a target kinematic model. Then, resorting to the generalized likelihood ratio test (GLRT) we derive track-before-detect (TBD) algorithms that can operate in scan-to-scan varying scenarios and, more important, that ensure the constant false track acceptance rate (CFTAR) property with respect to the covariance matrix of the disturbance. Moreover, we also propose CFTAR versions of the maximum likelihood-probabilistic data association (ML-PDA) algorithm capable of working with data from an array of sensors. The preliminary performance assessment, conducted resorting to Monte Carlo simulation, shows that the proposed TBD structures outperform the ML-PDA implementations especially in terms of probability of track detection (and for low signal-to-noise ratio (SNR) values).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.