Abstract

Abstract The top 100 basin-scale 1-day precipitation, multiday precipitation, and 1-day streamflow events from 1950 to 2012 are examined for the Ashokan reservoir, a key water source for New York City. Through a cyclone association algorithm, extratropical cyclones (ETCs) are found to be associated with the majority of the top 100 precipitation and streamflow events. Tropical cyclones (TCs) generate the second-most top 100 one-day and multiday precipitation events, with more than two-thirds of these TCs having undergone extratropical transition. Furthermore, TCs that pass over the region are approximately 7 and 4 times more likely to generate a top 100 one-day precipitation and one-day streamflow event, respectively, than ETCs. Lagrangian cyclone track analysis shows cool season ETCs take a more meridional path compared to warm season ETCs. A composite analysis shows that for the top 100 one-day precipitation events, ETCs have relatively less moisture but stronger upper-level support than TCs. Due in part to TCs, heavy precipitation events occur more often in the warm season, whereas high streamflow events occur mainly in the cool season. Despite this difference, approximately 43% of the top 100 events, which represent many of the very strongest events, overlap for all three metrics. While high temperature and specific humidity anomalies accompany all top 100 events, the magnitude of the anomalies is greatest for isolated streamflow events. This analysis provides a reference to forecasters and water managers regarding the relative and synoptic-scale behavior of different storm types for isolated and concurrent precipitation and streamflow events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call