Abstract

Background: root-zone water transport is crucial in the water transformation from precipitation to groundwater, directly influencing soil moisture distribution and resource acquisition for wetland plants. Methods: This study investigated the movement mechanism of root-zone (0–80 cm) soil water in the Poyang Lake wetland, China, during a dry year. Hydrological observation and stable isotopes (δ18O and δD) were utilized. Results: The root-zone soil water content was low (2.9–12.6%) at the high site covered by Artemisia capillaris, while it remained high (25.2–30.2%) at the median and low sites covered by Phragmites australis and Carex cinerascens, respectively. The isotopic values of shallow soil water (0–40 cm) in the A. capillaris site followed the seasonal pattern of rainfall isotopes, indicating predominantly rainfall recharge. Rainfall was primarily transported by piston flow, with an infiltration depth of approximately 60 cm. Conversely, depleted water isotopes measured at certain depths in P. australis and C. cinerascens sites closely resembled those of rainfall, suggesting that preferential flow dominated. The average groundwater contribution proportions in root-zone soil water were 65.5% and 57.4% in P. australis and C. cinerascens sites, respectively, while no contribution was detected in A. capillaris site. Conclusions: Preferential flow and groundwater recharge occurred in the P. australis and C. cinerascens sites. They enhance the hydrological connection at the profile scale and are useful for maintaining a favorable root-zone moisture environment for wetland ecosystems in dry years. However, the hydrological connectivity between root-zone soil and groundwater was found to be obstructed in the A. capillaris site. This might be the main reason for vegetation degradation at high elevations in the Poyang Lake wetland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call