Abstract

Understanding P uptake in soil-plant systems requires suitable P tracers. The stable oxygen isotope ratio in phosphate (expressed as δ18 OP ) is an alternative to radioactive labelling, but the degree to which plants preserve the δ18 OP value of the P source is unclear. We hypothesised that the source signal will be preserved in roots rather than shoots. In soil and hydroponic experiments with spring wheat (Triticum aestivum), we replaced irrigation water by 18 O-labelled water for up to 10d. We extracted plant inorganic phosphates with trichloroacetic acid (TCA), assessed temporal dynamics of δ18 OTCA-P values after changing to 18 O-labelled water and combined the results with a mathematical model. Within 1 wk, full equilibration of δ18 OTCA-P values with the isotope value of the water in the growth medium occurred in shoots but not in roots. Model results further indicated that root δ18 OTCA-P values were affected by back transport of phosphate from shoots to roots, with a greater contribution of source P at higher temperatures when back transport was reduced. Root δ18 OTCA-P partially preserved the source signal, providing an indicator of P uptake sources. This now needs to be tested extensively for different species, soil and climate conditions to enable application in future ecosystem studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.