Abstract

Environmental behaviors of heavy metal in soil are strongly influenced by seasonal freeze-thaw events at the mid-high altitudes. However, the potential impact mechanisms of freeze-thaw cycles on the vertical migration of heavy metal are still poor understood. This study aimed to explore how exogenous cadmium (Cd) migrated and remained in soil during the in-situ seasonal freeze-thaw action using rare earth elements (REEs) as tracers. As a comparison, soil which was incubated in the controlled laboratory (25 °C) was employed. Although there was no statistically significant difference in the Cd levels of different soil depths under different treatments, the original aggregate sources of Cd in the 5–10 cm and 10–15 cm soil layers differed. From the distributions of REEs in soil profile, it can be known that Cd in the subsurface of field incubated soil was mainly from the breakdown of >0.50 mm aggregates, while it was mainly from the <0.106 mm aggregates for the laboratory incubated soil. Furthermore, the dissolved and colloidal Cd concentrations were 0.47 μg L−1 and 0.62 μg L−1 in the leachates from field incubated soil than those from control soil (0.21 μg L−1 and 0.43 μg L−1). Additionally, the colloid-associated Cd in the leachate under field condition was mainly from the breakdown of >0.25 mm aggregates and the direct migration of <0.106 mm aggregates, while it was the breakdown of >0.50 mm and the direct migration of <0.106 mm aggregates for the soil under laboratory condition. Our results for the first time provided insights into the fate of exogenous contaminants in seasonal frozen regions using the rare earth element tracing method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call