Abstract

Abstract Recessive mutations in human N-glycanase 1 (NGLY1) cause a multisystem disorder with various phenotypes including global developmental delay. One of the models utilized to understand the biology of NGLY1 and the pathophysiology of NGLY1 deficiency is Drosophila melanogaster, a well-established, genetically tractable organism broadly used to study various biological processes and human diseases. Loss of the Drosophila NGLY1 homolog (Pngl) causes a host of phenotypes including developmental delay and lethality. Phenotypic, transcriptomic and genome-wide association analyses on Drosophila have revealed links between NGLY1 and several critical developmental and cellular pathways/processes. Further, repurposing screens of Food and Drug Administration (FDA)-approved drugs have identified potential candidates to ameliorate some of the Pngl-mutant phenotypes. Here, we will summarize the insights gained into the functions of NGLY1 from Drosophila studies. We hope that the current review article will encourage additional studies in Drosophila and other model systems towards establishing a therapeutic strategy for NGLY1 deficiency patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.