Abstract

The process of selecting certain desirable traits for plant breeding may compromise other potentially important traits, such as defences against pests; however, specific phenotypic changes occurring over the course of domestication are unknown for most domesticated plants. Cranberry (Vaccinium macrocarpon) offers a unique opportunity to study such changes: its domestication occurred recently, and we have access to the wild ancestors and intermediate varieties used in past crosses. In order to investigate whether breeding for increased yield and fruit quality traits may indirectly affect anti-herbivore defences, the chemical defences have been examined of five related cranberry varieties that span the history of domestication against a common folivore, the gypsy moth (Lymantria dispar). Direct defences were assessed by measuring the performance of gypsy moth caterpillars and levels of phenolic compounds in leaves, and indirect defences by assaying induced leaf volatile emissions. Our results suggest that breeding in cranberry has compromised plant defences: caterpillars performed best on the derived NJS98-23 (the highest-yielding variety) and its parent Ben Lear. Moreover, NJS98-23 showed reduced induction of volatile sesquiterpenes, and had lower concentrations of the defence-related hormone cis-jasmonic acid (JA) than ancestral varieties. However, induced direct defences were not obviously affected by breeding, as exogenous JA applications reduced caterpillar growth and increased the amounts of phenolics independent of variety. Our results suggest that compromised chemical defences in high-yielding cranberry varieties may lead to greater herbivore damage which, in turn, may require more intensive pesticide control measures. This finding should inform the direction of future breeding programmes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call